State the DFT properties.

 

1) Periodicity
    If a sequence x(n) is periodic with a periodicity of N samples, then N-point DFT of the sequence is also periodic with a periodicity of N samples.
Hence, if x(n) and x(k) are on N-point DFT pair then
x(n + N) = x(n)      for all n
X(k + N) = X(k)     for all k

2) Linearity
    If x1(n) ↔ X1(k) and  x2(n) ↔ X2(k) then for any real valued or complex valued constants a1 and a2
a1x1(n) + a2x2(n) ↔ a1X2(K) + a2X2(K)

3) Parseval's Theorem
    For complex-valued sequences x(n) and y(n)
If x(n) ↔ X(k) and y(n) ↔ Y(k) then ,
n=0N1x(n).y*(n)=1Nk=0N1X(k).Y*(k)
If x(n) = y(n),
n=0N1|x(n)|2=1Nk=0N1|X(k)|2

4) Time Reversal
    If x(n) ↔ X(k) then x((-n)N = x(N-n) ↔ X((-k))N = X(N-k)
Hence, reversing the N-point sequence in time is equivalent to reversing the DFT values.

5) Symmetry
    Let assume that N-point sequence x(n) and its DFT are complex valued then,
x(n) = xR(n) + j xI(n)    0 ≤  n ≤  N-1
X(k) = xR(k) + j XI(k)    0 ≤  k ≤  N-1
where,
xR(n)=1Nn=0N1[XR(k)cos(2πknN)XI(k)sin(2πknN)]
xI(n)=1Nn=0N1[XR(k)sin(2πknN)+XI(k)cos(2πknN)]
Similarly,
XR(k)=n=0N1[xR(n)cos(2πknN)+xI(n)sin(2πknN)]
XI(k)=n=0N1[xR(n)sin(2πknN)xI(n)cos(2πknN)]
6) Time Shift
    If x(n) ↔ X(k) then
x(n - l)N ↔ X(k) e(-j2πkl)/N

7) Frequency Shift
    If x(n) ↔ X(k) then
X(k) e(j2πkl)/N ↔ X((k-l))N

8) Convolution (Multiplication of 2 DFT's)
    x(n).y(n) ↔ X(k).Y(k)