1) Periodicity
4) Time Reversal
If x(n) ↔ X(k) then x((-n)N = x(N-n) ↔ X((-k))N = X(N-k)
Hence, reversing the N-point sequence in time is equivalent to reversing the DFT values.
5) Symmetry
Let assume that N-point sequence x(n) and its DFT are complex valued then,
7) Frequency Shift
If x(n) ↔ X(k) then
8) Convolution (Multiplication of 2 DFT's)
If a sequence x(n) is periodic with a periodicity of N samples, then N-point DFT of the sequence is also periodic with a periodicity of N samples.
Hence, if x(n) and x(k) are on N-point DFT pair then
x(n + N) = x(n) for all n
X(k + N) = X(k) for all k
2) Linearity
If x1(n) ↔ X1(k) and x2(n) ↔ X2(k) then for any real valued or complex valued constants a1 and a2
If x(n) = y(n),
a1x1(n) + a2x2(n) ↔ a1X2(K) + a2X2(K)
3) Parseval's Theorem
For complex-valued sequences x(n) and y(n)
If x(n) ↔ X(k) and y(n) ↔ Y(k) then ,
∑n=0N−1x(n).y*(n)=1N∑k=0N−1X(k).Y*(k)
∑n=0N−1|x(n)|2=1N∑k=0N−1|X(k)|2
4) Time Reversal
If x(n) ↔ X(k) then x((-n)N = x(N-n) ↔ X((-k))N = X(N-k)
Hence, reversing the N-point sequence in time is equivalent to reversing the DFT values.
5) Symmetry
Let assume that N-point sequence x(n) and its DFT are complex valued then,
x(n) = xR(n) + j xI(n) 0 ≤ n ≤ N-1
X(k) = xR(k) + j XI(k) 0 ≤ k ≤ N-1
X(k) = xR(k) + j XI(k) 0 ≤ k ≤ N-1
where,
xR(n)=1N∑n=0N−1[XR(k)cos(2πknN)−XI(k)sin(2πknN)]
xI(n)=1N∑n=0N−1[XR(k)sin(2πknN)+XI(k)cos(2πknN)]
Similarly,
XR(k)=∑n=0N−1[xR(n)cos(2πknN)+xI(n)sin(2πknN)]
XI(k)=−∑n=0N−1[xR(n)sin(2πknN)−xI(n)cos(2πknN)]
6) Time Shift
If x(n) ↔ X(k) then
x(n - l)N ↔ X(k) e(-j2πkl)/N
7) Frequency Shift
If x(n) ↔ X(k) then
X(k) e(j2πkl)/N ↔ X((k-l))N
8) Convolution (Multiplication of 2 DFT's)
x(n).y(n) ↔ X(k).Y(k)