Check for the following system is, i) Static or Dynamic, ii) Causal or Non-Causal, iii) Linear or Non-Linear, iv) Time Variant or Time Invariant, v) Stable or Unstable

 

a) y(n) = 2x(n-1) + x(2n)
  1. Static or Dynamic
  2. Since the system requires a previous value (n-1) to obtain the current value it needs a memory to store the previous values. Hence, a system is Dynamic.
  3. Causal or Non-Causal
  4. Since the system requires a future value x(2n) to obtain the current value, the system is Non-Causal.
  5. Linear or Non-Linear
  6. The system of linear is,
    T[a1x1(n) + a2x2(n)] = a1T[x1(n)] + a2T[x2(n)]
    Y3 = Y2 + Y1
    Y1 = 2x1(n-1) + x1(2n)
    Y2 = 2x2(n-1) + x2(2n)
    L.H.S = 2[a1x1(n-1) + a2x2(n-1)] + a1x1(2n) + a2x2(2n)
    R.H.S = a1[2x1(n-1) + x1(2n)] + a2[2x2(n-1) + x2(2n)]
    = 2a1x1(n-1) + 2a2x2(n-1) + a1x1(2n) + a2x2(2n)
    = L.H.S
    Therefore, system is Linear.
  7. Time Variant or Time Invariant
  8. y(n, k) = 2x(n-1-k) + x(2n - k)
    y(n-k) = 2x(n-k-1) + x(2(n-k))
    = 2x(n-k-1) + x(2n -2k)
    y(n, k) ≠ y(n-k)
    Therefore, System is Time Variant
  9. Stable or Unstable
  10. If n → ∞, input signal always remains finite thus input remains finite.
    The given system remains finite, ∴ System is stable
b) y(n) = a[x(n)]2 + bx(n)
  1. Static or Dynamic
  2. Since the system depends only on the present value it does not need any memory to store value. Therefore, the system is Static.
  3. Causal or Non-Causal
  4. Since the system depends only on present values it does not depend on any future value. Therefore, the system is Causal.
  5. Linear or Non-Linear
  6. The system of linear is,
    T[a1x1(n) + a2x2(n)] = a1T[x1(n)] + a2T[x2(n)]
    Y3 = Y2 + Y1
    Y1 = a[x1(n)]2 + bx1(n)
    Y2 = a[x2(n)]2 + bx2(n)
    L.H.S = a{[a1[x1(n)] + a2[x2(n)]}2
    R.H.S = a1{a[x1(n)]2 + bx1} + a2{a[x2(n)]2 + bx2}
    =aa1[x1(n)]2 + bx1(n) + aa2[x2(n)]2 + bx2(n)
    = a{a1[x1(n)]2 + a2[x2(n)]2} + b[a1x1(n) + a2x2(n)]
    ≠ L.H.S
    Therefore, system is Non-Linear.
  7. Time Variant or Time Invariant
  8. y(n, k) = a[x(n-k)]2 + bx(n-k)
    y(n-k) = a[x(n-k)]2 + bx(n-k)
    y(n, k) = y(n-k)
    Therefore, System is Time Invariant.
  9. Stable or Unstable
  10. If n → ∞, input signal always remains finite and input remains finite too.
    The given system remains finite, ∴ System is stable